PPDDL1.0: An Extension to PDDL for Expressing Planning Domains with Probabilistic Effects
نویسندگان
چکیده
We desribe a variation of the planning domain definition language, PDDL, that permits the modeling of probabilistic planning problems with rewards. This language, PPDDL1.0, was used as the input language for the probabilistic track of the 4th International Planning Competition. We provide the complete syntax for PPDDL1.0 and give a semantics of PPDDL1.0 planning problems in terms of Markov decision processes. Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
منابع مشابه
Prottle: A Probabilistic Temporal Planner
Planning with concurrent durative actions and probabilistic effects, or probabilistic temporal planning, is a relatively new area of research. The challenge is to replicate the success of modern temporal and probabilistic planners with domains that exhibit an interaction between time and uncertainty. We present a general framework for probabilistic temporal planning in which effects, the time a...
متن کاملProbabilistic Temporal Planning
Planning research has explored the issues that arise when planning with concurrent and durative actions. Separately, planners that can cope with probabilistic effects have also been created. However, few attempts have been made to combine both probabilistic effects and concurrent durative actions into a single planner. The principal one of which we are aware was targeted at a specific domain. W...
متن کاملCASP solutions for planning in hybrid domains
CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the ezcsp CASP solver in order to solv...
متن کاملExtending PDDL to Model Stochastic Decision Processes
We present an extension of PDDL for modeling stochastic decision processes. Our domain description language allows the specification of actions with probabilistic effects, exogenous events, and actions and events with delayed effects. The result is a language that can be used to specify stochastic decision processes, both discrete-time and continuous-time, of varying complexity. We also propose...
متن کاملPDDL+ Planning via Constraint Answer Set Programming
PDDL+ is an extension of PDDL that enables modelling planning domains with mixed discrete-continuous dynamics. In this paper we present a new approach to PDDL+ planning based on Constraint Answer Set Programming (CASP), i.e. ASP rules plus numerical constraints. To the best of our knowledge, ours is the first attempt to link PDDL+ planning and logic programming. We provide an encoding of PDDL+ ...
متن کامل